There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3] nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
Solution 1 in C++
#include <iostream> #include <algorithm> #include <vector> using namespace std; class Solution { public: double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { nums1.insert( nums1.end(), nums2.begin(), nums2.end()); sort( nums1.begin(), nums1.end()); int num_size = nums1.size(); if (num_size) { int iMedian=(int)(nums1.size()/2); cout << "count of numbers:" << num_size << endl; for( int i=0; i<num_size; i++) cout << nums1[i] << " "; cout << endl; cout << "Median index:" << iMedian << endl; if (num_size%2==1) return (double)nums1[iMedian]; else { return (double)(nums1[iMedian]+nums1[iMedian-1])/2; } } else return 0; } }; int main(void) { /* vector<int> nums1{ 1, 3}; vector<int> nums2{ 2}; */ vector<int> nums1{ 1, 2}; vector<int> nums2{ 3, 4}; Solution s; cout << s.findMedianSortedArrays( nums1, nums2) << endl; }
Solution 2 in Java
class Solution { public double findMedianSortedArrays(int[] A, int[] B) { int m = A.length; int n = B.length; if (m > n) { // to ensure m<=n int[] temp = A; A = B; B = temp; int tmp = m; m = n; n = tmp; } int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2; while (iMin <= iMax) { int i = (iMin + iMax) / 2; int j = halfLen - i; if (i < iMax && B[j-1] > A[i]){ iMin = i + 1; // i is too small } else if (i > iMin && A[i-1] > B[j]) { iMax = i - 1; // i is too big } else { // i is perfect int maxLeft = 0; if (i == 0) { maxLeft = B[j-1]; } else if (j == 0) { maxLeft = A[i-1]; } else { maxLeft = Math.max(A[i-1], B[j-1]); } if ( (m + n) % 2 == 1 ) { return maxLeft; } int minRight = 0; if (i == m) { minRight = B[j]; } else if (j == n) { minRight = A[i]; } else { minRight = Math.min(B[j], A[i]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } }
Solution 3 in Python
def median(A, B): m, n = len(A), len(B) if m > n: A, B, m, n = B, A, n, m if n == 0: raise ValueError imin, imax, half_len = 0, m, (m + n + 1) / 2 while imin <= imax: i = (imin + imax) / 2 j = half_len - i if i < m and B[j-1] > A[i]: # i is too small, must increase it imin = i + 1 elif i > 0 and A[i-1] > B[j]: # i is too big, must decrease it imax = i - 1 else: # i is perfect if i == 0: max_of_left = B[j-1] elif j == 0: max_of_left = A[i-1] else: max_of_left = max(A[i-1], B[j-1]) if (m + n) % 2 == 1: return max_of_left if i == m: min_of_right = B[j] elif j == n: min_of_right = A[i] else: min_of_right = min(A[i], B[j]) return (max_of_left + min_of_right) / 2.0